- Shibaeva, R. P. & Lobkovskaya, R. M. (1985). Kristallografiya, 30, 693-697.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, p. 303. London: Macmillan.
- Villarreal-Salinas, B. E. & Schlemper, E. O. (1978). J. Cryst. Mol. Struct. 8, 217–237.
- Wang, A. C. & Craven, B. M. (1979a). Acta Cryst. B35, 510-513.
- Wang, A. & Craven, B. M. (1979b). J. Pharm. Sci. 68, 361-363.
- Zalkin, A., Perry, D., Tsao, L. & Zhang, D. (1983). Acta Cryst. C39, 1186-1188.

analysis of the main-group metal tris(chelate) complex bis(tetraphenylarsonium) tris(2,2-diselenido-1,1ethylenedicarbonitrile-Se,Se')stannate(IV).

The geometry of the anion (Fig. 1) is comparable with $[Ni{Se_2C=C(CN)_2}_3]^2^-$; the six Se atoms define an irregular octahedron and the average distance to the central metal is 2.661 (3) Å. The coordination around the Sn^{IV} is distorted octahedral. The average projected twist angle of the two Se₃ triangles (Fig. 2) of the SnSe₆ polyhedron is 43.2°, intermediate between the 60 and 0° expected for octahedral and trigonal prismatic geometry, respectively.

Acta Cryst. (1993). C49, 1307-1309

Structure of $[As(C_6H_5)_4]_2$ - $[Sn{Se_2C=C(CN)_2}_3]$

DITMAR GRUß AND HANS-ULRICH HUMMEL

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse 1, W-8520 Erlangen, Germany

(Received 29 June 1992; accepted 3 December 1992)

Abstract

In the complex anion $[Sn{Se_2C=C(CN)_2}_3]$ in bis-(tetraphenylarsonium) tris(2,2-diselenido-1,1-ethylenedicarbonitrile-*Se*,*Se'*)stannate(IV), the Sn atom is at the center of a distorted octahedron formed of six Se atoms of the chelate ligands with an average Sn—Se bond length of 2.661 (3) Å. The bis(selenium) chelates show only small deviations from planarity and the average Se—C distance is 1.88 (1) Å.

Comment

Up to now only a few tris(chelate) complexes with unsaturated 1,1-diselenolato ligands have been structurally characterized. For these transition-metal complexes two different coordination geometries have been found. Whereas the central ion, Ni^{IV} in $[Ni{Se_2CN(C_4H_9)_2}_3]Br$ (Beurskens & Cras, 1971) $[As(C_6H_5)_4[Ni{Se_2C=C(CN)_2}_3]$ and (Kaiser. Dietzsch, Richter, Golič & Šiftar, 1980) has a distorted octahedral arrangement. the complex $[Fe{Se_2CN(CH_2Ph)_2}_3]BF_4$ has D_3 macrosymmetry with a coordination polyhedron intermediate between the idealized trigonal prismatic and trigonal antiprismatic geometries (Deplano, Trogu, Bigoli, Leporati, Pellinghelli, Perry, Saxton & Wilson, 1983). Here we describe the X-ray crystal structure

Fig. 1. Structure of the $[Sn{Se_2C==C(CN)_2}_3]^{2-}$ complex anion.

Fig. 2. SnSe₆ core with the two Se₃ triangles.

The average Se—Sn—Se' angle involving two different chelate ligands is $160.4 (1)^{\circ} (180^{\circ} \text{ in the perfect octahedron})$ while the intra-chelate angles Se—Sn—Se are in the narrow range 73.7 (1)– $74.0 (1)^{\circ}$ and reflect the rigid chelate geometry with Se—C—Se of about 116° .

The three selenolate ligands are nearly planar $(\Delta_{max} = 0.3 \text{ Å})$ and the system of bond lengths and angles compares well with values expected for covalent coordinated diselenolates (Dietzsch, Franke, Hoyer, Gruß & Hummel, 1991).

REGULAR STRUCTURAL PAPERS

Experimental		Se21	0.2504 (1)	0.4373	(1) 0.1159 (1)	0.0694 (8)
Crustal data		Se22	0.2057 (1)	0.4383	(1) 0.2919 (1)	0.0634 (7)
Crysiai aaia		C21	0.2278 (8)	0.368/	(9) 0.1970 (8)	0.050 (2)
$[As(C_6H_5)_4][Sn(C_4N_2Se_2)_3]$	Cell parameters from 87	C22	0.2294(9) 0.237(1)	0.273 (1	0.1679(6)	0.004(2) 0.075(2)
$M_{\rm r} = 1587.30$	reflections	C25	0.237 (1)	0.217 (1	0.2514(9)	0.075(2)
Triclinic	$\theta = 8 - 13^{\circ}$	N21	0.2418 (9)	0.1732	(9) 0.0508 (8)	0.097(2)
DI	$u = 5.230 \text{ mm}^{-1}$	N22	0.2152 (8)	0.1901	(8) 0.3053 (8)	0.085 (2)
	$\mu = 3.250 \text{ mm}$	Se31	0.0009(1)	0.4826	(1) 0.1063 (1)	0.0626 (7)
a = 14.581(9) A	I = 293 K	Se32	0.1185 (1)	0.6544	(1) 0.3031 (1)	0.0766 (8)
b = 14.62 (1) Å	Prism	C31	-0.0111 (8)	0.5649	(8) 0.2015 (7)	0.049 (2)
c = 16.88 (1) A	$0.08 \times 0.06 \times 0.03 \text{ mm}$	C32	-0.1080 (9)	0.5611	(8) 0.1956 (8)	0.054 (2)
$\alpha = 102.40 (2)^{\circ}$	Red	C33	-0.1169 (9)	0.618 (1	1) 0.2678 (9)	0.074 (2)
$\beta = 105.45 (2)^{\circ}$	Crystal source: SnCl ₂	C34	-0.199(1)	0.506 (.	() 0.1148 (9) () 0.2284 (8)	0.080 (2)
$\alpha = 11353(2)^{\circ}$	added to Ph ₄ AsCl.H ₂ O	N32	-0.1230 (9)	0.0009	(9) 0.3264(6) (0) 0.0482(8)	0.100(2) 0.007(2)
$V = 2063 (3) Å^3$	+ $K_2(C_4N_2Se_2)$ (Jensen	1432	-0.2098 (9)	0.4046	(3) 0.0482 (8)	0.097 (2)
7 - 2905 (5) A	& Henricksen 1070) in		Table 2	Geometric	narameters (Å. °)	
Z = Z	MoOU at room tompore		14010 2.	oconicii ic		
$D_x = 1.7/9 \text{ Mg m}$	Meon at toolit tempera-	Sn1-Sell		2.648 (3)	Se22	1.88(1)
Mo $K\alpha$ radiation	ture; recrystallized from	Sn1—Se21		2.658 (3)	$C_{21} - C_{22}$	1.30 (2)
$\lambda = 0.7099 \text{ Å}$	acetone-ether	Sn1 - Ses1		2.001 (2)	C22-C24	1.41(2) 1.42(2)
		Sn1 - Se12 Sn1 - Se22		2.666 (3)	C22-C23	1.42(2)
Data collection		Sn1—Se32		2.669 (3)	C24—N22	1.16 (2)
Huber diffractometer	4572 observed reflections	Sel1-C11		1.875 (9)	Se31-C31	1.88 (1)
Labrann Laman mafia	$[E \setminus A \cap \sigma(E)]$	Se12-C11		1.88 (1)	Se32-C31	1.887 (8)
Lenmanii-Laisen prome	$[1^{\prime} > 4.00(1^{\prime})]$	C11-C12		1.36(1)	C31-C32	1.37 (2)
analysis; 6 scan width	$\theta_{\rm max} = 20$	C12—C14		1.40 (2)	C32—C33	1.39 (2)
$(1.0 + 0.20\tan\theta)^\circ$; θ scan	$h = -14 \rightarrow 14$	C12-C13		1.41 (1)	C32—C34	1.41 (2)
rate $0.8^{\circ} \text{ min}^{-1}$	$k = -14 \rightarrow 14$	C13—N11		1.14 (1)	C33N31	1.17 (2)
Absorption correction:	$l = -16 \rightarrow 0$	CI4NI2		1.14 (2)	C34—N32	1.15 (2)
empirical	4 standard reflections	3621-021		1.09(1)		
$T_{\rm min} = 0.836, T_{\rm max} =$	frequency: 100 min	Sell-Snl-	-Se21	94.64 (9)	C14—C12—C13	116(1)
1 1 50	intensity variation: 2%	Sell-Snl-	Se31	96.63 (8)	$\frac{N11-C13-C12}{N12-C14-C12}$	177 1 (9)
5505 measured reflections		Sell_Snl-	-Se22	160 77 (8)	Se22-C21-Se21	116.6 (7)
5505 measured reneetions		Sell-Snl-	-Se32	102.30 (9)	C22 - C21 - Se22	122 (1)
Refinement		Se21—Sn1-	-Se31	94.91 (7)	C22-C21-Se21	121 (1)
	(1) 0.001	Se21-Sn1-	-Se12	103.32 (9)	C21-C22-C24	122 (1)
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.231$	Se21—Sn1-	Se22	74.03 (8)	C21-C22-C23	123 (1)
Final $R = 0.062$	$\Delta \rho_{\rm max} = 0.352 \ {\rm e} \ {\rm A}^{-3}$	Se21—Sn1-	-Se32	160.48 (7)	C24-C22-C23	115(1)
wR = 0.055	$\Delta \rho_{\rm min} = -0.257 \ {\rm e} \ {\rm \AA}^{-3}$	Se31—Sn1-	-Se12	159.93 (9)	N21-C23-C22	176 (2)
S = 1.712	Atomic scattering factors	Se31-Sn1-	Se22 Se32	99.74 (7) 73.74 (8)	N22-024-022 Se31_031_Se32	1160(7)
4572 reflections	from International Tables	Sel2—Sn1-	Se22	93.37 (8)	C32 - C31 - Se31	121.4 (7)
455 parameters	for X-ray Crystallogra-	Sel2-Snl-	-Se32	90.79 (8)	C32 - C31 - Se32	122.6 (9)
H-atom narameters not re-	nhy (1074 Vol IV Table	Se22-Sn1-	-Se32	91.96 (9)	C31-C32-C33	120.7 (9)
finad	200	Se11-C11-	-Se12	116.4 (5)	C31-C32-C34	121 (1)
$1/(-2/E) + 0.0001E^2$	2.2D)	C12C11-	-Sell	122 (1)	C33-C32-C34	118 (1)
$w = 1/[\sigma^{-}(F) + 0.0001F^{-}]$		C12-C11-	-Se12	122.0 (8)	N31-C33-C32	179 (1)
Data callections DWCOM (C	amm 1002) Call referements	C11-C12-	-C14	121.7 (9)	N32-C34-C32	177 (2)

Data collection: PWCOM (Gomm, 1992). Cell refinement: PWCOM. Data reduction: Xtal3.0 ADDREF, SORTRF (Hall & Stewart, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEP (Johnson, 1965); SCHAKAL (Keller, 1988). Software used to prepare material for publication: Xtal3.0 BONDLA, CIFIO.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for the complex anion

Atomic coordinates for the cation have been deposited (see footnote). $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	$U_{\rm eq}$
Sn1	0.2107 (1)	0.5765 (1)	0.2105 (1)	0.0574 (5)
Se11	0.2807 (1)	0.7200(1)	0.1378 (1)	0.0670 (7)
Se12	0.4082 (1)	0.7284 (1)	0.3273 (1)	0.0670 (7)
C11	0.4063 (9)	0.7932 (8)	0.2424 (7)	0.057 (2)
C12	0.4912 (9)	0.8873 (9)	0.2555 (8)	0.060 (2)
C13	0.585(1)	0.9453 (9)	0.3350 (9)	0.063 (2)
C14	0.4933 (9)	0.9305 (9)	0.1890 (9)	0.067 (2)
N11	0.6582 (9)	0.9921 (9)	0.4008 (8)	0.098 (2)
N12	0.4908 (8)	0.9619 (8)	0.1325 (8)	0.085 (2)

Lists of structure factors, anisotropic thermal parameters, coordinates of the cation, bond distances, bond angles, torsion angles and mean-planes data, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55905 (34 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1016]

122 (1)

(8)

References

C11-C12-C13

Beurskens, P. T. & Cras, J. A. (1971). J. Cryst. Mol. Struct. 1, 63-67.

Deplano, P., Trogu, E. F., Bigoli, F., Leporati, E., Pellinghelli, M. A., Perry, D. L., Saxton, R. J. & Wilson, L. J. (1983). J. Chem. Soc. Dalton Trans. pp. 25-28.

Dietzsch, W., Franke, A., Hoyer, E., Gruß, D. & Hummel, H.-U. (1991). Acta Cryst. C47, 2041-2043.

Gomm, M. (1992). PWCOM. Version 6.6. Software system for Huber diffractometers. Univ. of Erlangen-Nürnberg, Germany.

- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Jensen, K. A. & Henriksen, L. (1970). Acta Chem. Scand. 24, 3213-3229.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kaiser, J., Dietzsch, W., Richter, R., Golič, L. & Šiftar, J. (1980). Acta Cryst. B36, 147–150.
- Keller, E. (1988). SCHAKAL88. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Albert-Ludwigs-Univ., Freiburg, Germany.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELXS80. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1309-1311

Structure of Bis- μ -[(trimethylsilylmethanolato-O)-bis(trimethylsilylmethyl)gallium] and Bis- μ -[(trimethylsilylmethanolato-O)-bis(trimethylsilylmethyl)indium]

UDO DEMBOWSKI, THOMAS PAPE, REGINE HERBST-IRMER, EHMKE POHL, HERBERT W. ROESKY AND GEORGE M. SHELDRICK

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 3400 Göttingen, Germany

(Received 11 August 1992; accepted 22 December 1992)

Abstract

Two new compounds, (I) bis- μ -(trimethylsilylmethanolato-O)-bis[bis(trimethylsilylmethyl)gallium] and (II) bis- μ -(trimethylsilylmethanolato-O)-bis[bis(trimethylsilylmethyl)indium], have been obtained with dimeric structures, with planar four-membered Ga₂O₂ and In₂O₂ rings, respectively.

Comment

The asymmetric unit of (I) consists of two independent molecules each with an inversion centre in the middle of the four-membered ring. As these two molecules are almost identical, only one is shown in Fig. 1 (weighted r.m.s deviation 0.17 Å). Owing to the inversion centre the four-membered ring is exactly planar. On average, the endocyclic angles are O—Ga—O 81.6 (1) and Ga—O—Ga 98.4 (1)°. The exocyclic angles are increased by the steric demand of the bulky $CH_2Si(CH_3)_3$ groups $[C-Ga-C 126.8 (2)^\circ]$. The observed average bond lengths Ga-O 1.967 (4) and Ga-C 1.966 (4) Å agree well with values found in the analogous compound $[(C_5H_5)_2GaOEt]_2$ (Cowley, Mehrota, Atwood & Hunter, 1985).

In contrast to (I), compound (II) does not possess any crystallographic symmetry. The four-membered In_2O_2 ring is almost planar (mean deviation from least-squares plane 0.06 Å). The mean endocyclic angles are O—In—O 79.3 (1) and In—O—In 100.3 (1)°. As in (I), the exocyclic angles on the In atoms are increased by the steric demand of the $CH_2Si(CH_3)_3$ groups. The different arrangement of the $CH_2Si(CH_3)_3$ groups [C5—In1—C6 130.9 (1) and C3—In2—C4 144.2 (1)°]. As in (I), no unusual bond lengths were found. The mean bond lengths In—O 2.173 (2) and In—C 2.152 (4) Å are in good agreement with values found in [('Bu)InOEt]₂ (Bradley, Frigo, Hursthouse & Hussain, 1988).

Fig. 1. Structure of one molecule of (1) showing 50% probability displacement ellipsoids. The H atoms are omitted for clarity.

Fig. 2. Structure of (II) showing 50% probability displacement ellipsoids. The H atoms are omitted for clarity.

Experimental

Compound (I) Crystal data $[Ga_2(C_4H_{11}OSi)_2(C_4H_{11}Si)_4]$ $M_r = 694.75$

 $D_x = 1.131 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

Acta Crystallographica Section C ISSN 0108-2701 ©1993